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The "nite element method based on the Hellinger}Reissner principle with independent
strain is applied to the vibration problem of cantilevered twisted plates and cylindrical,
conical laminated shells. With a small number of elements, the present assumed strain "nite
element method is validated by convergence tests and numerical tests, comparing with the
previous published vibration results for cantilevered conical shell. Computational e!ort and
virtual storage reduce signi"cantly due to good convergence. This study presents the
twisting angle e!ect on vibration characteristics of conical laminated shells. Parameter
studies with varying shallowness of cylindrical and conical shells are carried out. As the
curvature increases, the fundamental mode shape changes from twisting mode to bending
mode. For shells with a large curvature, the fundamental frequency, which is always
characterized to bending mode, is almost constant independent of twisting angle. The
twisting angle a!ects greatly twisting frequency and mode shape.

� 2002 Published by Elsevier Science Ltd.
1. INTRODUCTION

The vibration analysis of composite plates and shells has been studied for decades. The
advances in composite technology have led the extensive application of composite materials
in aerospace, marine and mechanical engineering. In particular, a turbo-machinery blade is
preferred to be designed using composite materials due to the advantages in strength,
weight, durability and design #exibility with tailoring of "ber angles in di!erent layers.
Many researchers analyzed shell structures to obtain their vibration characteristics using

semi-analytic methods and the "nite element method. Among semi-analytic methods, the
Rayleigh}Ritz method is extensively used. Most vibration studies using the Rayleigh}Ritz
method based on Kirchho!}Love shell theory are con"ned to closed cylindrical or conical
shells [1}4]. The relatively few studies for vibration of open conical shells have been carried
out. Srinivasan and Krishnan [5] investigated the free vibration frequencies of fully
clamped opened conical shells based on Donnell's theory using an integral equation
approach. Shu [6] provided the generalized di!erential quadrature method for the
vibration analysis of conical shells. Lim and Liew [7,8] obtained natural frequencies and
mode shapes for cantilevered conical shells using the Ritz method. The common drawback
of most semi-analytic methods is that it is not easy to implement for various boundary
conditions.
0022-460X/02/$35.00 � 2002 Published by Elsevier Science Ltd.
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In contrast to semi-analytic methods, independently of boundary conditions, the "nite
element method can be easily applied to solve vibration characteristics of shells. Many
studies of thin cylindrical shells using the "nite element method have been performed on
vibration characteristics [9}13]. For thin structures, one main undesirable feature of shear
locking is unavoidable in the "nite element method. To alleviate this undesirable shear
locking, the selective/reduced integration scheme [14] has been widely used in the
conventional assumed displacement method. In addition, a large number of mesh elements
is required to obtain good convergence. This requires a lot of virtual storage and
computational e!ort.
As an alternative approach to overcome this shortcoming, hybrid elements, which

can be constructed by introducing independent stress or strain variable, have been
studied by many researchers [15]. Assumed strain elements based on Hellinger}Reissner
principle have proved to be highly successful in eliminating the detrimental shear locking
[16].
The present assumed strain "nite element method with 40 assumed strain parameters

[17] uses the degenerated solid shell element [18], which can easily handle arbitrary shell
geometries and "nite rotation, for the vibration analysis of twisted cylindrical and conical
shells. Most propellers or turbo-machinery blades are constructed with twisting angle. The
vibration analysis of cantilevered twisted laminated conical shells has not been discussed
extensively except for that by commercial "nite element packages in industries. The main
concern of this study is to investigate the e!ects of twisting angle on vibration
characteristics for cantilevered plates and cylindrical, conical laminated shells. The
validation of the present "nite element method is demonstrated by numerical tests
comparing with the published results.

2. FINITE ELEMENT FORMULATION

The global position vector X and displacement vector U of a generic material point P can
be expressed as follows [16]:
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where a
�
and a

�
are orthogonal unit vectors, which are tangent to the shell midsurface. For

a degenerated solid shell element, the position vector and the displacement vector of point
P are interpolated in the "nite element using their corresponding nodal values. Introducing
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Figure 1. Kinematics of shell deformation.
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the shape function N of nine-node element, equations (1) and (2) can be rewritten as
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where subscript j means node number j in the element.
For a solid in equilibrium by introducing the principle of virtual work, the formulation is

expressed as

�
�

(��� )�� d<#�
�

�U�UG d<"0, (6)

where ��� is the virtual strain vector, � is the stress vector, �U is the virtual displacement
vector, � is the mass density and < is the volume.
Introducing an independent strain vector � and the displacement-dependent strain vector

�� , the compatibility condition is expressed as

�
�

(��)� (�� !�) d<"0, (7)

where �� is the virtual stress vector.
The stress vector � is related to material elastic constant matrix C and independent strain

vector �. Then

�"C� (8)

For the analysis of composite shells, the displacement-dependent strain �� and the
displacement-independent strain � are assumed to vary linearly through the shell thickness.
The assumption is expressed as follows:

�� "��
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In equation (9), ��
�
, �� � , and �
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, �� , are independent of �. Also, they are de"ned in the form as

follows:

��
�
"�

�
(�� �#��

��), �� �"
1

2�
(�� �!��

��),

�
�
"�

�
(��#�

��), ��"
1

2�
(��!�

��), (10)

where subscripts � and!� denote its values at �"� and �"!�. In this study, � is chosen

as �"1/�3 in accordance with the two-point Gaussian integration rule. By the relations
between the global Cartesian co-ordinate system (X, >, Z) and the normalized nodal
co-ordinate system (�, �, � ), matrix J is de"ned as
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Using equation (4), the Jacobian matrix of an element can be expressed as
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The determinant J of Jacobian matrix is also assumed to vary linearly in the thickness
direction. Then
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where J
�
, J� and r are de"ned as
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The linear assumption of strain and the determinant of the Jacobian matrix through the
thickness allows analytical integration in the thickness direction for laminated composite
shells.
Introducing isoparametric shape functions N of nine-node element, nodal degrees of

freedom qe with "ve components (u, v, w, �
�
, �

�
),

U"Nqe , �� "Bqe , (15, 16)

where B is a matrix relating strain to displacement.
Choosing a set of 40 assumed strain parameters �, the assumed displacement-

independent strain is

�"P� (17)
in which the size of P matrix is 5�40. For details on assumed strain parameters, see
reference [17].
Utilizing equations (8), (15), (16) and (17), the compatibility condition, i.e., equation (7),

and the strain energy term in equation (6) can be written as follows:
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where the summation sign indicates assembly over all elements.
From equation (18), � can be obtained. Then

�"H��Gqe . (21)

Assuming simple harmonic motion for small amplitude vibration, the displacement
vector can be expressed as
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"ei��N*qe , (22)
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Using equations (5) and (22), the kinetic energy term becomes

� �UT�UG d<"!��� �qT
e (N*

T�N* ) dA
�
. (24)

Introducing equations (19), (21) and (24), the equilibrium equation (equation (6)) is
transformed into an eigenvalue problem as follows:

Kq"��Mq (25)

with

K"GTH��G, M"�N*�N* (26)

where K and M are the global sti!ness and mass matrices respectively.

3. VERIFICATION AND COMPARISON

The present "nite element method is based on degenerated solid element with "ve degrees
of freedom. The present method is applicable for plates and shells with arbitrary shapes
(cylindrical, spherical and conical shells) except for very thick structures. Applying two
point integration of Gaussian rule through the thickness direction, strains can be computed
more accurately than the "rst order shear deformable theory. For the validity and reliability
of the present vibration analysis code, the vibration characteristics of cantilevered plates
and cylindrical, conical shells are compared with those of published papers.
Shell con"gurations are shown in Figure 2. First, the vibration frequencies of

a cantilevered plate and shell are investigated using a mesh division with 4�6 elements. The
graphite/epoxy material properties are described in Table 1.
For graphite/epoxy cantilevered laminated [$45/G45]

�
plate with a/b"2, h"1)04mm

and b"76)2mm, The "rst "ve frequencies are illustrated in Table 2. The present results are
in good agreement with the calculated and experimental results of Crawley [10] and "nite
element results of Ottia et al. [13].
For graphite/epoxy cantilevered laminates of [0/0/$30]

�
cylindrical panel, as shown in

Figure 2, with a/b"2, h"1)04mm, b"76)2mm and R"127mm, the results are
illustrated in Table 3. The present "nite element results obtained by the small number of
elements have lower natural frequencies than the previous "nite element results and are very
close to the experimental results [10, 13].



TABLE 1

Material properties

Graphite/epoxy E-glass/epoxy

E
�

128Gpa 60)7GPa
E
�

11Gpa 24)8GPa
G

��
4)48Gpa 12)0GPa

G
��

4)48Gpa 12)0GPa
G

��
4)48Gpa 12)0GPa

v
��

0)25 0)23
� 1500kg/m� 2000kg/m�

TABLE 2

Comparison of vibration frequencies (Hz) of cantilevered [45/!45/!45/45]
�
graphite/epoxy

plate with a/b"2, h"1)04mm and b"76)2mm�

Mode Present Reference [10] Reference [13]

1 31)54 31)9 31)85
(31)3�)

2 189)3 191)3 191)16
(185)8�)

3 224)3 228)2 228)2
(214)0�)

4 557)5 565)2 562)2
(533)0�)

5 694)3 708)3 653)0
(653)0�)

�The values in parentheses are experimental results.
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Next, natural frequencies of a cantilevered conical shallow shell with the lamination of
[!�/�]

�
are investigated. Consider thin shallow conical shell with length a, base cone arc

length b
�
, thickness h, vertex angle �

�
and subtended angle �. The E-glass/epoxy conical

shell geometry, as shown in Figure 3, has a/h"100, a/b
�
"1)5, �

�
"153 and �"303. The

material uses E-glass/epoxy of Table 1.
Comparison of Ritz method and "nite element package solutions is shown in Figure 4.

The non-dimensional frequency parameters *"�a�v
��
/E

�
of cantilevered conical

shells, with various "ber orientation �, are very close to the results of Lim et al. [8] obtained
using Ritz method and the results of LUSAS (a "nite element package), obtained by 15�30
elements [8]. Even with the small number of elements, the present solutions have a good
agreement with Ritz method and "nite element package solutions.

4. NUMERICAL RESULTS AND DISCUSSIONS

4.1. TWISTED CANTILEVERED PLATES AND CYLINDRICAL SHELLS

Consider a twisted cantilevered plate and shell where the twisting angle � ranges from
0 to 903. The lamination consists of graphite/epoxy [0/$45/90]

�
for plates and shells. The



TABLE 3

Comparison of vibration frequencies (Hz) of cantilevered [0/0/$30]
�
graphite/epoxy

cylindrical shell with a/b"2, R"127mm, h"1)04mm and b"76)2mm

Mode Present Reference [10] Reference [13]

1 165)5 165)7 168)7
(161)0�)

2 285)5 289)6 295)1
(245)1�)

3 598)3 597)1 606)1
(555)6�)

4 710)5 718)5 713)0
(670)0�)

5 825)0 833)3 816)94
(794)0�)

�The values in parentheses are experimental results.
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TABLE 4

E+ects of shallowness ratio for twisted cantilevered cylindrical [0/$45/90]
�
graphite/epoxy

shells with a/b"2, b"76)2mm, h"1)04mm and �"203

Mode

R/b 1 2 3 4 5

1 171)65 435)25 827)06 902)00 1285)50
2 105)01 356)76 700)14 856)65 1020)90
3 82)83 344)49 601)97 854)02 937)33
4 72)90 340)50 547)21 843)73 933)40
5 67)57 338)24 516)74 837)28 940)75

10 59)12 332)50 471)01 829)85 965)99
100 55)36 326)47 455)63 830)93 966)97
Plate 55)22 325)90 455)21 831)82 963)51
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twisting angle is de"ned as shown in Figure 3. The twisting angle is assumed to vary linearly
in the x-direction with reference to the center of the half-width (b/2).
Figure 5 shows the e!ect of twisting angles on natural frequencies of cantilevered

[0/$45/90]
�
plates. The fundamental frequency, which is always characterized to the "rst

bending mode, is almost constant independently of twisting angle �. As the twisting angle
increases up to �"153, the second frequency of the "rst twisting mode increases. Beyond
�"153, the second vibration mode changes from the "rst twisting mode to the second
bending mode. The twisting angle a!ects greatly twisting and higher bending modes for
cantilevered plates. The twisting angle improves signi"cantly vibration frequencies of
twisting modes.



Twisting angle, � 
Mode 

°0 °10 °30 °45

1  

2  

3 

4 

5 

Figure 7. Mode shapes of various twisted cantilevered [0/$45/90]
�
graphite/epoxy shells with a/b"2,

b"76)2mm, h"1)04mm and R"127mm.

TABLE 5

Convergence test for non-dimensional frequencies ("�a��/E
�
) for twisted cantilevered

conical graphite/epoxy [$45]
�
shells with a/h"100, s/a"5, �

�
"153, �"303 and �"153

Mode frequencies

Element division 1 2 3 4 5

4�4 0)03332 0)16794 0)19023 0)44162 0)48242
5�5 0)03329 0)16764 0)18939 0)44006 0)47891
6�6 0)03327 0)16750 0)18905 0)43925 0)47747
7�7 0)03326 0)16741 0)18888 0)43877 0)47673
8�8 0)03325 0)16735 0)18879 0)43844 0)47629
9�9 0)03324 0)16731 0)18873 0)43818 0)47603
10�10 0)03323 0)16727 0)18868 0)43800 0)47585
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Figure 6 shows the results on the e!ects of twisting angles on natural frequencies for
cantilevered [0/$45/90]

�
cylindrical shell with R"127mm. Vibration mode shapes

corresponding to natural frequencies are shown in Figure 7. The boundary line indicates the
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h"1)04mm and R"127mm for various shallow ratio.
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original undeformed shape. As the twisting angle increases, the "rst frequency decreases and
the corresponding mode shape also changes. It is observed that bending modes become
lower modes with increase in twisting angle. For �"203, the natural frequencies of the "rst
"ve modes are distributed in wide ranges. It is desirable to have a separation of the lower
vibration modes for design considerations.
Table 4 presents the e!ect of shallowness ratio on vibration frequencies for twisted

cylindrical shells with a twisting angle �"203. Figure 8 shows mode shapes corresponding
to the natural frequencies. As shallowness (R/b

�
) increases, all frequencies reduce and the

"rst mode becomes bending mode. This is because the curvature in#uences sti!ness and
hence natural frequencies.

4.2. TWISTED CANTILEVERED CONICAL SHELLS

Consider a twisted conical shell with a/h"100, s/a"5, �
�
"153, �"303 and �"153.

To con"rm the convergence of solution, convergence test is conducted. The convergence of

non-dimensional frequencies ("�a��/E
�
) for its conical shell with graphite/epoxy

[$45]
�
lamination is presented in Table 5. The number of elements increases from 4�4



TABLE 6

Non-dimensional frequencies ("�a��/E
�
) for twisted cantilevered conical [$45]

�
graphite/epoxy shells with a/h"100, s/a"5 and �

�
"153

Mode
Subtended Twisting
angle, � angle, � 1 2 3 4 5

60 0 0)10334 0)11866 0)31734 0)38582 0)47452
15 0)08640 0)14414 0)32905 0)41381 0)47821
30 0)06585 0)17619 0)34067 0)41447 0)51462
45 0)05230 0)18061 0)36731 0)41942 0)50679
60 0)04336 0)15995 0)41019 0)41883 0)48279
75 0)03728 0)13354 0)38519 0)45007 0)49970
90 0)03302 0)11041 0)34275 0)47684 0)53512

45 0 0)06798 0)12225 0)35665 0)35985 0)62518
15 0)06210 0)13846 0)31263 0)41817 0)61466
30 0)05089 0)16285 0)28067 0)44693 0)62330
45 0)04241 0)16102 0)28810 0)43707 0)63811
60 0)03655 0)13877 0)32444 0)40768 0)64671
75 0)03247 0)11577 0)34997 0)38962 0)65181
90 0)02957 0)09688 0)32279 0)42356 0)64992

30 0 0)0331 0)1658 0)1884 0)4312 0)4706
15 0)0333 0)1675 0)1891 0)4393 0)4775
30 0)0318 0)1546 0)2007 0)4273 0)4980
45 0)0297 0)1327 0)2256 0)3920 0)5394
60 0)0276 0)1118 0)2561 0)3543 0)5814
75 0)0259 0)0944 0)2885 0)3198 0)6056
90 0)0244 0)0805 0)2858 0)3252 0)5949

15 0 0)0156 0)0924 0)2165 0)2586 0)3025
15 0)0158 0)0903 0)2208 0)2616 0)3034
30 0)0159 0)0839 0)2285 0)2690 0)3064
45 0)0160 0)0759 0)2291 0)2878 0)3114
60 0)0161 0)0681 0)2225 0)3130 0)3200
75 0)0162 0)0610 0)2127 0)3242 0)3456
90 0)0163 0)0549 0)2017 0)3332 0)3693
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meshes to 10�10 meshes. As observed, the present solutions have excellent convergence.
Comparing with 4�4 and 10�10 meshes, the results by 4�4 mesh have a deviation of less
1% from those of 10�10 mesh for the "rst four frequencies.
For four types of subtended angles with �"153, �"303, �"453 and �"603, the

results of the e!ects of twisting angles � on the non-dimensional frequencies of
graphite/epoxy cantilevered [$45]

�
conical shells with a/h"100, s/a"5 and �

�
"153 is

presented in Table 6. For conical shell with �"153, as the twisting angle � increases, there
is no signi"cant change in fundamental frequencies for various twisting angles and the
second frequencies decrease. For conical shells with �*303, as the twisting angle
� increases, the "rst frequencies decrease. An increase in the subtended angle indicates an
increase in the depth of a shell. For a deeper shell, the twisting angle a!ects greatly the
fundamental frequencies.
Figures 9 and 10 show the mode shapes for the cantilevered twisted [$45]

�
conical shell

with a subtended angle �"603 and �"453 respectively. Note that there is a change in the
"rst vibrating modes: one is twisting mode and the other is bending mode.
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Here, the e!ects of the "ber orientation on the vibration characteristics is investigated for
a pretwisted cantilevered [$�]

�
conical shell with a/h"100, s/a"5, �

�
"153 and �"303.

Figure 11 shows the results of the non-dimensional frequencies "�a�v
��
/E

�
for

pretwisted moderately deep shell with �"303. Up to "ber orientations �"203, the "rst
"ve frequencies increase. For �'203, the "ber orientation signi"cantly a!ects higher
frequencies. Figure 12 shows the non-dimensional frequencies "�a�v

��
/E

�
for

pretwisted shallow shell with �"103. All frequencies decrease except for the third
frequency for all "ber orientation.
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Figure 11. E!ects of "ber orientation on the non-dimensional frequencies "�a�v
��
/E

�
for twisted

cantilevered [$�]
�
graphite/epoxy shells with a/h"100, s/a"5, �

�
"153, �"303 and �"303.
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Figure 12. E!ects of "ber orientation on the non-dimensional frequencies "�a�v
��
/E

�
for twisted

cantilevered [$�]
�
graphite/epoxy shells with a/h"100, s/a"5, �

�
"153, �"303 and �"103.
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Figure 13. E!ects of "ber orientation on the non-dimensional frequencies "�a�v
��
/E

�
for twisted

cantilevered [0/$�/90]
�
graphite/epoxy shells with a/h"100, s/a"5, �

�
"153, �"303 and �"303.
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Figure 14. E!ects of "ber orientation on the non-dimensional frequencies "� a�v
��
/E

�
for twisted

cantilevered [0/$�/90]
�
graphite/epoxy shells with a/h"100, s/a"5, �

�
"153, �"303 and �"103.
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Consider a conical shell with [0/$�/90]
�
where the material is graphite/epoxy and the

geometry is the same as the previous case. Figure 13 presents the nondimensional

frequencies "�a�v
��
/E

�
for the pretwisted moderately deep shell with �"303. The

lower frequencies are not greatly in#uenced for all orientations considered. All frequencies
near �"203 are higher than those for any other orientation. For a shallow conical shell of
�"103, all frequencies are lower than those of �"303 as shown in Figure 14. The
fundamental frequencies are almost constant for all "ber orientations. The second
frequencies decrease slightly with increase in "ber orientation.

5. CONCLUSIONS

The vibration characteristics of twisted cantilevered structures have been investigated
using the "nite element method with assumed strain based on Hellinger}Reissner principle.
The present method used a degenerated solid shell element for the application of twisted
conical shell. With a small number of elements, the present method has excellent
convergence. Vibration frequencies and mode shapes for various twisted cylindrical and
conical shells have been presented. The fundamental mode was a!ected substantially by
shallowness ratio. For a slightly curved shell with large shallowness, there is no signi"cant
change in the fundamental frequency and mode shapes. As the twisting angle increases,
frequencies of twisting modes increase signi"cantly but frequencies of higher bending modes
decrease.
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